Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis.

نویسندگان

  • Soline Estrach
  • Carrie A Ambler
  • Cristina Lo Celso
  • Katsuto Hozumi
  • Fiona M Watt
چکیده

The Wnt and Notch signalling pathways regulate hair follicle maintenance, but how they intersect is unknown. We show that Notch signalling is active in the hair follicle pre-cortex, a region of high Wnt activity, where commitment to hair lineages occurs. Deletion of jagged 1 (Jag1) results in inhibition of the hair growth cycle and conversion of hair follicles into cysts of cells undergoing interfollicular epidermal differentiation. Conversely, activation of Notch in adult epidermis triggers expansion of the base of the hair follicle, sebaceous gland enlargement and abnormal clumping of the follicles. In adult epidermis, the induction of new hair follicle formation by beta-catenin is prevented by blocking Notch signalling pharmacologically or through Jag1 deletion. Conversely, activation of both pathways accelerates growth and differentiation of ectopic follicles. beta-catenin stimulates Notch signalling by inducing Jag1 transcription. We conclude that the Notch pathway acts downstream of the Wnt/beta-catenin pathway to determine epidermal cell fate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lrig1 Expression Defines a Distinct Multipotent Stem Cell Population in Mammalian Epidermis

Lrig1 is a marker of human interfollicular epidermal stem cells and helps maintain stem cell quiescence. We show that, in mouse epidermis, Lrig1 defines the hair follicle junctional zone adjacent to the sebaceous glands and infundibulum. Lrig1 is a Myc target gene; loss of Lrig1 increases the proliferative capacity of stem cells in culture and results in epidermal hyperproliferation in vivo. Lr...

متن کامل

Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours.

When beta-catenin signalling is disturbed from mid-gestation onwards lineage commitment is profoundly altered in postnatal mouse epidermis. We have investigated whether adult epidermis has the capacity for beta-catenin-induced lineage conversion without prior embryonic priming. We fused N-terminally truncated, stabilised beta-catenin to the ligand-binding domain of a mutant oestrogen receptor (...

متن کامل

The Vitamin D Receptor Is a Wnt Effector that Controls Hair Follicle Differentiation and Specifies Tumor Type in Adult Epidermis

We have investigated how Wnt and vitamin D receptor signals regulate epidermal differentiation. Many epidermal genes induced by beta-catenin, including the stem cell marker keratin 15, contain vitamin D response elements (VDREs) and several are induced independently of TCF/Lef. The VDR is required for beta-catenin induced hair follicle formation in adult epidermis, and the vitamin D analog EB10...

متن کامل

Activation of beta-catenin signaling programs embryonic epidermis to hair follicle fate.

beta-Catenin signaling is required for hair follicle development, but it is unknown whether its activation is sufficient to globally program embryonic epidermis to hair follicle fate. To address this, we mutated endogenous epithelial beta-catenin to a dominant-active form in vivo. Hair follicle placodes were expanded and induced prematurely in activated beta-catenin mutant embryos, but failed t...

متن کامل

β-Catenin Controls Hair Follicle Morphogenesis and Stem Cell Differentiation in the Skin

beta-Catenin is an essential molecule in Wnt/wingless signaling, which controls decisive steps in embryogenesis. To study the role of beta-catenin in skin development, we introduced a conditional mutation of the gene in the epidermis and hair follicles using Cre/loxP technology. When beta-catenin is mutated during embryogenesis, formation of placodes that generate hair follicles is blocked. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 133 22  شماره 

صفحات  -

تاریخ انتشار 2006